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We study the motion of an unbound particle under the influence of a random force modeled as
Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint
and marginal probability density functions and find the associated solutions. We analyze in detail
anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and
explore possible connections between dynamical exponents of the variance and the fractal dimension

of the trajectories.
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I. INTRODUCTION

In the past decade there has been much interest in
studying the effects of colored noise on a given dynamical
system [1,2]. The kind of systems that have been treated
are mainly first-order systems, that is, random processes
X (t) whose dynamical evolution is described in terms of
first-order differential equations of the form

X = f(X)+ F(t), (L.1)
where F(t) is a random function with specified statis-
tical characteristics. However, from the point of view
of physics, the displacement X (¢) of a particle (which
we assume to be of unit mass) under the influence of a
deterministic force f(X) and an external random force
F(t) is not properly given by the above equation but by
Newton’s law

X +BX + f(X) = F(¢). (1.2)
Obviously Eq. (1.1) can be considered an approximation
to Eq. (1.2) in the overdamped regime when inertial ef-
fects are negligible, i.e. |X| <« |6X|. Unfortunately, dy-
namical equations such as (1.2) are much more difficult
to deal with even in the simplest cases. Nevertheless, in
spite of the technical difficulties inherent in second-order
dynamics, there has been recent work on inertial pro-
cesses driven by colored noise. Thus we have found exact
results for unbounded second-order processes [3-5], ap-
proximate results for free second-order processes driven
by Ornstein-Uhlenbeck noise [6], and results on linear
oscillators driven by colored noise, which can be internal
[7,8], or external noise [9-11].

In this paper we will consider the simple (but nontriv-
ial) case of an undamped free particle under the influence
of a random acceleration

X = F(t), (1.3)
where F'(t) is Gaussian colored noise, which we assume to
be zero centered and with an arbitrary correlation func-
tion

1063-651X/95/51(4)/2987(9)/$06.00 51

k(t,t') = (F(t)F(t)).

We note that F'(t) will generally be a nonstationary and
non-Markovian random process and, in many cases, F'(t)
will posses a fractal structure [8,12]. Our objectives here
are first, to obtain exact equations and expressions for the
joint probability density function p(z,v,t) of displace-
ment z and velocity v of the particle and the marginal
densities p(v,t) and p(z,t) of the velocity and the dis-
placement, second, to find anomalous diffusive behaviors
of process (1.3); and third, to study the fractal structure
of the trajectories.

The paper is organized as follows. In Sec. II we obtain
the joint and marginal probability density functions of
process (1.3). Section III is devoted to stationary input
noise with special emphasis on the only case of station-
ary colored noise that is both Gaussian and Markovian:
Ornstein-Uhlenbeck noise. In Sec. IV we set a fairly gen-
eral asymptotic analysis of the stationary case and study
anomalous diffusion behaviors. In Sec. V we present a
relevant case of nonstationary input noise and in Sec. VI
we study the fractal behavior of the trajectories. We end
with a brief summary and some conclusions in Sec. VII.
Technical aspects are in the Appendixes.

II. PROBABILITY DENSITY FUNCTIONS

The joint probability density function p(z,v,t) for a
displacement x and a velocity v at time ¢ of the process
(1.3) is defined by

p(z,v,t) = (§(z — X(t))é(v — X (1)), (2.1)

where the symbol ( ) means the average over all possible
realizations of the input noise F'(t) and

t t
X (t) = zo + vot + / at’ / dt"F(t"), (2.2)
0 0o

X (t) =vo + /0 t dt'F(t). (2.3)
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Now starting from Eq. (2.1) and following a standard
procedure that involves functional derivatives and the use
of Novikov’s theorem, one can easily see that p(z,v,t)
obeys the equation (see Appendix A for details)

op _ _, 0% d*p
R (L0}« SRTCPcx o1 PR
where
¢
= [ k¢, ¢)dt 2.5
olt) = [ kte)at (23)
and
t
#(t) = /0 (¢ — ¢')k(t, ) de'. (2.6)
The initial condition attached to Eq. (2.4) is
p(z,v,0) = 6(x — 20)d (v — vo). (2.7)

The joint characteristic function of the process

p(p, pyt) =/ dwe“"‘”/ dve *p(z,v,t) (2.8)

obeys the first-order partial differential equation

8 4\ . 2 -
(6t “ap) (1, p,t) [kpd(t) + p*p(t)]D(1, ps t)
(2.9)
with initial condition
—i(uzo+pvo)

p(p,p,0) =€ (2.10)

In Appendix B we show that the solution to problem
(2.9) and (2.10) is given by

Py, pst) = exp{ —i[pumo + (p + pt)vo]

- % [PP02(t) + 2ppol,(t) + p?al(t)] },

(2.11)
where
t t'
oi(t) =2/ dt’/ dt'"k(t',t"), (2.12)
1] 0
t t'
aﬁu(t)=/ dt’/ dt" (2t —t' —t")k(t',t"), (2.13)
0 (1]

and

2(4) =2/0tdt’(t—-t') [ dt" (¢ — tYk(,¢").  (2.14)

The joint probability density function p(z,v,t) can thus
be written as

(’U bl 'U())2

) = 1
P t) = o 5@ ) T 202 ()

3 [z — 2o — vot — (v — vo)r2(t)]

}, (2.15)

252(z)
where
S(t) = 4[o2(t) — ;;((tt)) (2.16)
and
(1) = 2220 (2.17)

ou(t)

We note at this point that Eq. (2.15) can also be ob-
tained following a different approach that takes into ac-
count the Gaussian character of X (t), which, in turn, is a
consequence of the linearity of Eq. (1.3). This approach
consists of assuming a joint characteristic function of the
form given by Eq. (2.11) and evaluating the variances
o2(t), 02,(t), and 02(t) from Egs. (2.2) and (2.3). Nev-
ertheless, this procedure works only for linear processes,
while that of Appendixes A and B is more general and
suitable for the approximate treatment of nonlinear pro-
cesses.

The marginal characteristic function of the velocity,
which is the Fourier transform of the marginal probability
density of the velocity defined by

p(v,t) = / p(z,v,t)dz,

can be obtained from the joint characteristic function just
by setting x = 0 in Eq. (2.9). We thus have

p(p,t) = exp {-va0 — 3P az(t)} (2.18)

One easily sees from this equation that the marginal den-
sity of the velocity satisfies the diffusion equation

2 p0,1) = 2Du(t) 2 p(v,) (2.19)
atp IU’ - 2 v a'vzp v? b .
with a time varying diffusion coefficient given by
D,(t) = = 2/ k(t,t")dt'. (2.20)

If we now set p = 0 in Eq. (2.9) we obtain the marginal
characteristic function of the displacement:

P(p,t) = exp {—i,u(:z:g + vot) — -,u am(t)} (2.21)

In this case the marginal density p(z,t) obeys the some-
what more complicated diffusion equation

%p(az + vot, t) = D () (z + vot, t), (2.22)

azp



51 FREE INERTIAL PROCESSES DRIVEN BY GAUSSIAN ... 2989

with a diffusion coefficient D, (t) = do2(t)/dt given by

t t'
D,(t) = 2/ dt'/ dat"(2t —t' — t")k(t',t"). (2.23)
0 0

Equations (2.4) and (2.11)—(2.23) furnish a complete ex-
act solution to the problem of free inertial processes
driven by Gaussian colored noise. In the following sec-
tions we will study some relevant special cases and ex-
plore the consequences of having these exact expressions.

III. STATIONARY INPUT NOISE

In this section we assume that the input noise F(t) is
stationary, that is,

(FRO)F()) = k(t—-t). (3.1)
The equation satisfied by the joint density p(z,v,t) is
given by Eq. (2.4) and its solution by Eq. (2.15) with
(see Appendix C)

o2(t) = 2 /0 dt’ /0 dt"k(e"), (3.2)
2 1 2
azv(t) = 'ita-v(t)’ (33)
o2(t) = / t dt't'o?(t'). (3.4)
]

Analogously, the equations for the marginal density of
velocity p(v,t) and displacement p(z,t) are given by Egs.
(2.19) and (2.22) with diffusion coefficients given by

Du(t) =2 /0 k() ar (3.5)

and

Da(t) =t fo "D, ()t (3.6)

Let us now assume that F(t) is also a Markovian noise.
In this case Doob’s theorem [13] tell us that F(t) is neces-
sarily either white noise or exponentially correlated noise
(also referred to as Ornstein-Uhlenbeck noise)
e_|t_tll/"'c ,

k(t—t') = 511 (3.7)

Te

where D is the noise intensity and 7. is the correlation
time. The variance of the velocity now reads

oi(t) = D7, (;t— -14 e_‘/"’) .

[+

(3.8)

We note that when ¢t/7. > 1 the variance behaves like

o2(t) ~ Dt (t/7e > 1), (3.9)

that is, at sufficiently long times the velocity undergoes
ordinary diffusion. On the other hand, when t/7. <« 1
we have

2 D .
which corresponds to ballistic motion. In this case the
marginal density p(v,t) obeys Eq. (2.19) with

D,(t) =D (1 - e—*/fc) . (3.11)

The variance of the displacement is now given by

to-oef3(2)'-3(2)

+1-— (1 + ;rt—) e—‘/fc] . (3.12)
When t/7. > 1 we see that
2 D 3
oi(t) ~ ?t (t/7e > 1), (3.13)

which corresponds to superdiffusive behavior [3]. When
t/7. < 1 we obtain from Eq. (3.12)

D
o2(t) ~ —t*  (t/Te < 1) (3.14)

87,
and this again corresponds to ballistic motion. We also
note that the marginal density p(z,t) obeys Eq. (2.22)
with

Dy(t) =Dt [t 7. (1-e™™)] . (3.15)
We finally mention that the expansions of all of the
above results (regarding Ornstein-Uhlenbeck noise) when
t/T. € 1 and t/7, > 1 agree with the corresponding ap-
proximate expressions recently obtained by Heinrichs [6].

IV. ASYMPTOTIC BEHAVIOR
AND ANOMALOUS DIFFUSION

We will now discuss with some generality the asymp-
totic behavior of the variances 02(t) and 02(¢) in terms
of the asymptotic behavior of the correlation function
k(t) of the stationary input noise. Let us start studying
the behavior of the variances at very short times. When
t — 0 we can easily see from Eqgs. (3.2) and (3.4) that

a‘lzl(t) ~ tzs a:(t) ~ t45 (t - 0)7 (41)
which corresponds to ballistic motion. This is not a sur-
prising result since at very short times colored noise keeps
its initial value, i.e., F'(t) = F(0) (with probability 1),
and the motion is ballistic.

We will now explore the more interesting case when ¢
is large. Let us denote by k(s) the Laplace transform of
the correlation function
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f(s) = /0 T et (t)dt

and assume that, for small values of s, k(s) has the be-
havior
k(s) ~s*71 (s = 0). (4.2)
In such a case, Tauberian theorems tell us that as ¢ — oo,
the correlation function behaves as [14]
k(t) ~t™<. (4.3)
We note that the case where a > 0 but not an integer
corresponds to long-time tail correlation functions [8].
Let 62%(s) be the Laplace transform of the variance
o2(t); then the Laplace transform of Eq. (3.2) and the
use of Eq. (4.2) yield

(s — 0),
whence

ol(t) ~ 27 (t — o0). (4.4)
We observe that if @ > 2, then o2(t) — 0 as t — oo.
Therefore, at sufficiently long times, the velocity X(t)
becomes “localized” at its mean value, that is, X (t) ~
(X(@)-

Starting from Eq. (3.4) and following an analogous
reasoning, we also obtain the asymptotic estimate for the
variance of the displacement

o2(t) ~t*7*  (t = o0). (4.5)
Note that if a > 4, then 02(t) — 0 as t — co. Therefore,
when a > 4 both the velocity and the displacement be-
come localized at their mean values. In what follows we
will assume that o < 2.

Suppose that k(t) is an integrable function for ¢ €
[0, ), then

k(0) = /Ooo k(t)dt < oo

and from Eq. (4.2) we see that
a>1.

Since we also asume that a < 2, we conclude from Egs.
(4.4) and (4.5) that if a long-tailed correlation function
k(t) is integrable, then, at sufficiently long times, the ve-
locity X (t) is always subdiffusive while the displacement
X (t) is always superdiffusive.

We now relax the assumption that k(t) is an integrable
function and only assume that the input noise F(t) is
ergodic. In this case its correlation function k(t) satisfies
the Slutski condition [15]

1 t
lim n k(t)dt' = 0.

t—oo 0

(4.6)
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The Laplace transform of

e(t) = /0 k(t)dt'

is given by

and by Eq. (4.2) we see that
P(s) ~s*72 (s —=0).
In this case from the Tauberian theorem we obtain

o) ~ 17 (t — 00).

Hence
1 t
?/ k(t)dt ~t™* (t = o0)
0

and the Slutski condition Eq. (4.6) will be satisfied if and
only if

a>0.

Since we have also assumed that a < 2, we conclude
from Eqs. (4.4) and (4.5) that if F(¢t) is ergodic, the
velocity presents a subdiffusive behavior when 2 > a > 1
and a superdiffusive behavior when 0 < a < 1, while the
displacement is always superdiffusive [16].

V. FRACTIONAL BROWNIAN MOTION

As a relevant example of nonstationary input noise we
will study the case when F(t) = B,(t) is the so-called
fractional Brownian motion (FBM). The FBM process is
a Gaussian fractal process and represents a generaliza-
tion of ordinary Brownian motion in which the standard
deviation of the increment |B,(t + T) — Bq(t)| goes as
T* with 0 < a < 1. When o = 1/2 the FBM reduces to
an ordinary Brownian motion. One important feature of
these kinds of processes is that they show a strong inter-
dependence between distant samples. This asymptotic
dependence is the reason for their usefulness in modeling
nonstationary time series [17].

A simple version of FBM is given by the following mov-
ing average [12]:

1

Ba) = payizmy J, (€~

where 0 < o < 1 and £(7) is Gaussian white noise. As-
suming that £(7) is zero centered we easily find that the
correlation function kq(t,t') = (Bu(t)Ba(t')) of FBM
reads
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min(t,t')
ka(tt) = I“Z(_aii/_z‘) /o (¢ = 7)(¢' = 7)]*"2dr.

(5.1)

We will first evaluate the variance of the velocity o2(t).
The substitution of Eq. (5.1) into Eq. (2.12) yields

2 . 2
O = T 1)

t t' t"
x/ dt’/ dt”/ dr((# — 7)(t" — )"z,
0 0 0

If we interchange the order of the integrals with respect
to 7 and t"" we finally get

g

1

t2(cx+1).
(@t DI%(a + 3/2)

ol(t) = 5 (5.2)
Since 0 < a < 1 we see that the behavior of the velocity
is always superdiffusive.

Following an analogous reasoning we can also obtain,
after some algebra, an expression for the variance of the
displacement o2 (t). Nevertheless, it turns out to be easier
to follow a more straightforward way. Indeed, from the
point of view of generalized functions we can write B,(t)
to be the solution of the differential equation

Bu(t) = Ba_1(2). (5.3)
If we assume that xo = vo = 0, the velocity of the particle
is then given by [cf. Eq. (1.3)]

X (t) = Ba+1(t) (5-4)
and its displacement by
X (t) = Bat2(t). (5.5)

Therefore the correlation function of the velocity is [cf.
Eq. (5.1)]

(XWX (X)) = kasa(t,t) (5.6)

and the correlation function of the displacement is

(X®)X() = kasa(t,t). (5.7)

The variance of the velocity 02(t) = kq1(t,t) is therefore

given by Eq. (5.2) and the variance of the displacement
02(t) = kat2(t,t) reads [cf. Eq. (5.1)]

o2(t) = L f2(at2)

e 2(a + 2)T2(a +5/2) )

(5.8)

We thus see that the displacement also exhibits a su-
perdiffusive behavior.

As we have mentioned, when a = 1/2 the FBM reduces
to the Wiener process W (t) for which (W)W (t')) =
min(¢,t'). In this case

205 _ 1.3
oi(t) = 3t

v

and
1
2 5
t) = =t°.

To our knowledge, a superdiffusive behavior with a dy-
namical exponent v = 5 has never been reported in the
literature [18]. We finally observe that since Gaussian
white noise £(t) is the derivative (in the sense of gener-
alized functions) of the Wiener process W (t) = d{(t)/dt,
and if V(t) = X (t), then the variances above correspond
to that of the random process V (t) = £(t) [3], this imme-
diately implies the superdiffusive behaviors ¢ and 5.

VI. FRACTAL STRUCTURE
OF THE TRAJECTORIES

As is well known, the trajectories of the Brownian mo-
tion (or Wiener) process (that is, the trajectories of un-
bounded first-order processes driven by Gaussian white
noise) are fractal objects in the sense that they show self-
similarity and have a Hausdorff (or fractal) dimension
d = 2 greater than the topological dimension [19,20]. We
have shown elsewhere [12] that the trajectories of un-
bound first-order processes driven by arbitrary Gaussian
noise may possess a fractal structure with Hausdorff di-
mensions greater than or equal to the topological dimen-
sion. In this section we will explore the possible fractal
structure of the trajectories of the second-order process
(1.3).

We first present a brief summary of the main results
of our previous work [12]. Let Z(¢) be a random process
whose dynamical evolution is governed by the equation

Z(t) = F(t), (6.1)

where F'(t) is Gaussian noise with zero mean and arbi-
trary correlation function

(F)F(t)) = k(¢ t'). (6.2)
We will assume that Z(0) = 0 and define
t t
T, (4,t) = /t dr /t dr'k(r, 7). 6.3)
This function can also be written in the form
U, (t,t') = k,(t,t) + k, (', t) — 2k, (¢, ), (6.4)

where k. (t,t) is the correlation function of the output
Z(2),

t t
ko (t,8) = (Z(B)Z(2)) = / dT/ dr'k(r, 7). (6.5)
0 0
We now suppose an equal time behavior of the function
¥, (t,t') in the form
U, (t,t+€) = A(t)e” + o(e7), (6.6)

where 0 < v < 2 and A(t) is an arbitrary function. Let
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us denote by d, the fractal dimension of the curve Z(t);
then

(6.7)

that is, the fractal dimension of the trajectories of the
process (6.1) is (with probability 1) proportional to the
inverse of the exponent that governs the equal time be-
havior of the correlation function of the output process
[12].

Before proceeding further let us note that if the input
noise is stationary

(FR)F(t')) = k(t — t'),

then one can easily see that Eq. (6.3) can be written in
the form

T, (tt+e) = / dr / dr'k(r — ) (6.8)
0 0
and the variance of Z(t) can be written as
t t
02(t) = ka(t,1) = / dT/ dr'k(r — 7).
0 0
Hence
U, (t,t +€) = a2(e). (6.9)

Therefore, we see from Egs. (6.6), (6.7), and (6.9) that
the fractal dimension of a first-order process driven by
stationary Gaussian noise is governed by the short-time
behavior of its variance.

Let us now apply these results to our second-order pro-
cess. We first observe that when the input noise is sta-
tionary the fractal dimension of the velocity trajectories
will be governed by the short-time behavior of the vari-
ance

U, (t,t +€) = a2(e).

Thus, for Ornstein-Uhlenbeck driving noise we have [cfr.
Eq. (3.8)]

D
2 2 2
= —¢€“ + o(e®).
73(6) = gt + ole?)
In this case d, = 1 and the fractal dimension of the ve-
locity trajectories X (t) equals the topological dimension.

For stationary Gaussian 1/f noise with zero mean and
power spectrum given by 1/f%, we have

[

k(t—t) = __—-—’t Ty

(6.10)

where c is a constant and 0 < a < 1.[12] (this is a typical
example of the kind of input noise with a long-time tail
correlation that we discussed in Sec. IV). The variance
of the velocity now reads

2 2c

t) = tite,
UU( ) a(l +a)
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whence

_ 2
T 14a’

v

Since 0 < a < 1, we see that the fractal dimension of the
trajectories of the velocity is any real number between 1
and 2 depending on the exponent of the power spectrum.

In order to evaluate the fractal dimension of the tra-
jectories X (t) of the free inertial process (1.3) we assume
that £o = vg = 0 and write the dynamical equation (1.3)
in the form

() = -/:F(t’)dt'. (6.11)

Therefore, the correlation function of the displacement
ks(t,t') = (X (1) X (t')) is

t t'
ko (£, ¢) = / dr / dr'ky (7, 7'), (6.12)
0 0

where k,(t,t') is the correlation function of the velocity

ko (£, ) = /0 dr /0 dr' (F(r)F () (6.13)

and the fractal dimension of X (¢) will now be given by
the equal time behavior of the function

Wo(t,t +€) = ko (t,t) + kot + €,t + €) — 2k, (t,t + €).
(6.14)

For Gaussian 1/f noise the correlation function of the
input noise F(t) is given by Eq. (6.10) and we obtain,
after some algebra, the following correlation function for

X(t):

ko (t,t) = i {t”“t' + tt/2te

a(l+a)(2+a)

1
- t3+a t13+n — |t — t’ 3+a . .
o [P Pl L (615)

If we substitute Eq. (6.15) into Eq. (6.14) we get

2c
Bt +) = o
N F.
(6.16)

The Taylor expansion of this equation around € = 0 yields

U, (t,t+€) = A(t)e? + O(€3). (6.17)
Therefore d, = 1, i.e., the fractal dimension of the trajec-
tory X (t) equals the topological dimension and, contrary
to the velocity, the displacement of the particle presents
no fractal behavior.
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For Ornstein-Uhlenbeck driving noise, with D = 7. =
1, we have

(FF(¢) = (1/2) exp(—[t — t'])

and the correlation function of the trajectory of the par-
ticle is [cf. Egs. (6.12) and (6.13)]

1 1 1 1

1
ko (t,t') = —(—its + 5tzt’ - Ett’ + 5t’ -5t

—S ) = S et e

2
(6.18)

In this case, one can easily show that
U, (t,t+€) = A(t)e’ + O (€°), (6.19)

whence d, = 1 and, as in the case of the velocity, there
is no fractal structure for the trajectories X (t).

Let us finally assume, as an example of nonstationary
input noise, that F'(t) is the fractional Brownian motion
defined in Sec. V. In this case, the correlation function of
the velocity is given by Eq. (5.6), where k4 (t,t') is defined
in Eq. (5.1). Analogously, the correlation function of the
displacement is given by Eq. (5.7). In order to obtain the
fractal dimension of X (t) and X (t) we must evaluate the
equal time behavior of the function

Varj(t,t+€) = karj(tt) + katj(t + €t +e)

—2kayij(t,t +€), (6.20)

where j = 1 (2) for the velocity (displacement). The
substitution of Eq. (5.1) into Eq. (6.20) yields

1
I2(a+j+3)

1 2a+j) | 42(ati
x{ ———— | (t + )2 4 g2(atd)
{2(a+3) {‘ °

-2 /ot (t—7)(t+e— 7')]"‘4".—1/2 dT}.

(6.21)

Vatj(t,t+e€) =

By expanding the right-hand side of this equation we can
easily see that

Uotj(t,t +€) = A(t)e® + O(e3)

and by Eq. (6.7) we see that both the velocity and the
displacement have the same fractal dimension

(6.22)

dv=d:=1,

which is equal to the topological dimension.

We finally note that the results of this section seem
to indicate that the fractal dimension of the trajectories
for the displacement X (t) of the inertial process (1.3)
is always equal to the topological dimension regardless
the form of the correlation function k(t,t’) of the driving
noise. In fact, we can give a simple, although not rigor-
ous, proof of this assertion. In effect, for very short time

increments, the displacement of the particle is given by
X(t+ At) = X(t)At + O (At?)

and (X2(t + At)) ~ At2. Hence d, = 1 and the fractal
dimension equals the topological dimension. However,
the fractal dimension of trajectories of the velocity X (t)
is dependent of the correlation function of the driving
noise.

VII. SUMMARY AND CONCLUSIONS

The problem of describing the motion of a free iner-
tial processes in an unbounded space driven by arbitrary
Gaussian colored noise has been analyzed in detail. We
have derived exact equations for the joint and marginal
densities and obtained the exact solutions for the initial-
value problem.

Under a variety of circumstances the asymptotic be-
havior of a random process is that of ordinary diffusion,
that is, the variance of the process grows linearly as time
increases. Nevertheless, the consideration of inertial ef-
fects has been shown to change this situation and sup-
perdiffusion appears [3]. On the other hand, a nonflat
spectrum of the driving noise (i.e., the color) also changes
that situation, for colored noise may produce not only su-
perdiffusion but anomalous diffusion

ai(t) ~t¥ (v > 0),

where v is the so-called dynamical exponent of the vari-
ance and v < 1 for subdiffusion and v > 1 for superdiffu-
sion. Herein we have also analyzed the anomalous diffu-
sion behavior of both the velocity and the displacement
of the random particle with special emphasis on input
noises that have long-time tail correlation functions. One
interesting aspect of this behavior is the appearance of
subdiffusion or superdiffusion depending on the power of
the tail.

Fractal geometry seems to be a convenient tool for
studying disorderd media since the fractal dimension is
a quantitative measure of some degree of disorder [21].
On the other hand, it has been known for some time
that some random processes possess a fractal structure
with Hausdorff dimensions greater than the topological
dimensions [19,12]. We have studied in detail the effects
of a random acceleration on the fractal behavior of the
trajectories of the particle. We have first shown that for
first-order processes driven by stationary noise, there is
a simple relation between the short-time behavior of the
variance and the fractal dimension d of the process [cf.
Egs. (6.6), (6.7), and (6.9)]

o2(t) ~ t?/4 (7.1)

(t = 0). This is an interesting expression since it con-
stitutes an example of the interplay between statistical
properties and the underlying geometry of the problem.
In this sense, it resembles the classical Donsker-Varadhan
approximation for the trapping problem where the aver-
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age survival probability inside a volume of topological
dimension d has the asymptotic property [22,23]

In(S(t)) ~ ¥/ (@+2)

(t = o0). Unfortunately, there does not seem to be an
equivalent relation to that of Eq. (7.1) either when the
input noise is nonstationary or for the long-time behavior
of the variance of the velocity and for the fractal dimen-
sion of the trajectories X (¢) of free inertial processes.
Although, in the latter case, we have obtained a variety
of fractal dimensions depending on the correlation func-
tion of the driving noise. Nevertheless, we have been
unable to relate these fractal dimensions to any asymp-
totic property of the variance. This point is presently
under investigation.
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APPENDIX A: DERIVATION OF EQ. (2.4)

We write §(r — R(t)) = 6(z — X (¢))6(v — X (t)). Then
the derivative of Eq. (2.1) with respect to time and the
use of Eq. (1.3) yield

% (z,v,t) = —v%p(z,v,t) — %(F(t)&(r —R(¢))).
(A1)

We now use Novikov’s theorem [24] to write

(F(t)5(r — R(t))) = /0 dt'k(t, ) <5F5(t,) 8(r — R(t))> ,

but
5 _sX(@) @
6F—(t')6(r -R(t) = “3‘1;‘(7,)555(1‘ —R(t))
5X(t) @
~5p(e) 0@ R, (A2)
where [cf. Egs. (2.2) and (2.3)]
B =-teu-v), 2 -eu-v)

where O(x) is the Heaviside step function. Therefore,
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(PO~ () = - [o06) 35 + 90 57 | par0.),
(A3

where ¢(t) and ¢(t) are defined in Eqgs. (2.5) and (2.6).
The substitution of Eq. (A3) into Eq. (A1) immediately
leads to Eq. (2.4).

APPENDIX B: DERIVATION OF EQ. (2.11)

The change of variables

/

p=p o=ptpt

turns Eq. (2.9) into the first-order ordinary differential
equation

%ﬁ(u, p,o) = i [l“f’ (?) +Pte (¥)]

xp(u, p, o) (B1)
with initial condition
ﬁ(ll«,p =0, 0.) — e—i(umo+dvu). (Bz)

In the original variables (u, p,t) the solution of problem
(B1) and (B2) reads

p(p,pst) = exp{ —i[pxo + (0 + ut)vo)
ptut _
_ / " (t 4 u) dy
A u
1 ptut _
——/ yzw(t+p——y)d'y ,
©J, 7

which after some manipulations results in Eq. (2.11).

APPENDIX C: DERIVATION OF EQS. (3.3)
AND (3.4)

Taking into account that k(t',t"”) = k(¢' — t"") we can
write Eq. (2.12) in the form

20 =2 [ ate-o)e-o) | " aner)

tl
+ / dt”t”k(t”)} .
0o

Integrating by parts the last integral on the right-hand
side of this equation we get

oi(t) = 2/0 dt'(t —t') [up(t') —/0 dt"ga(t")] , (C1)

where ¢(t) is defined by Eq. (2.5). Integrating by parts
another time we have
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t t' t t
/ dt’f dt”cp(t”):t/ dt’ap(t’)—/ dt't’' p(t').
0 0 V] 0

The substitution of this equation into Eq. (C1) and some
reorganization of terms yield

t t'
o2(t) = / ¢t / dt" (¢,
(1] 0

that is [cf. Eq. (2.12)],

t t’ t”
o2(t) = / t'dt’ / dt" / at"' k(")
0 1] 0

and taking into account Eq. (3.2) we finally get Eq. (3.4).
Following an analogous procedure one can also obtain Eq.
(3.3).
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